首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28698篇
  免费   5789篇
  国内免费   6720篇
测绘学   1339篇
大气科学   6669篇
地球物理   7439篇
地质学   14422篇
海洋学   3349篇
天文学   1390篇
综合类   3280篇
自然地理   3319篇
  2024年   31篇
  2023年   410篇
  2022年   1170篇
  2021年   1322篇
  2020年   1185篇
  2019年   1228篇
  2018年   1562篇
  2017年   1454篇
  2016年   1674篇
  2015年   1299篇
  2014年   1724篇
  2013年   1563篇
  2012年   1515篇
  2011年   1549篇
  2010年   1691篇
  2009年   1704篇
  2008年   1450篇
  2007年   1409篇
  2006年   1180篇
  2005年   1071篇
  2004年   851篇
  2003年   850篇
  2002年   837篇
  2001年   811篇
  2000年   1010篇
  1999年   1444篇
  1998年   1209篇
  1997年   1300篇
  1996年   1080篇
  1995年   994篇
  1994年   892篇
  1993年   780篇
  1992年   632篇
  1991年   451篇
  1990年   311篇
  1989年   345篇
  1988年   291篇
  1987年   199篇
  1986年   162篇
  1985年   115篇
  1984年   100篇
  1983年   77篇
  1982年   76篇
  1981年   53篇
  1980年   45篇
  1979年   27篇
  1978年   16篇
  1977年   7篇
  1976年   6篇
  1958年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The problem of predicting the geometric structure of induced fractures is highly complex and significant in the fracturing stimulation of rock reservoirs. In the traditional continuous fracturing models, the mechanical properties of reservoir rock are input as macroscopic quantities. These models neglect the microcracks and discontinuous characteristics of rock, which are important factors influencing the geometric structure of the induced fractures. In this paper, we simulate supercritical CO2 fracturing based on the bonded particle model to investigate the effect of original natural microcracks on the induced‐fracture network distribution. The microcracks are simulated explicitly as broken bonds that form and coalesce into macroscopic fractures in the supercritical CO2 fracturing process. A calculation method for the distribution uniformity index (DUI) is proposed. The influence of the total number and DUI of initial microcracks on the mechanical properties of the rock sample is studied. The DUI of the induced fractures of supercritical CO2 fracturing and hydraulic fracturing for different DUIs of initial microcracks are compared, holding other conditions constant. The sensitivity of the DUI of the induced fractures to that of initial natural microcracks under different horizontal stress ratios is also probed. The numerical results indicate that the distribution of induced fractures of supercritical CO2 fracturing is more uniform than that of common hydraulic fracturing when the horizontal stress ratio is small.  相似文献   
992.
The effects of fractures on wave propagation problems are increasingly abstracting the attention of scholars and engineers in rock engineering field. This study aims to fully validate the ability of discontinuous deformation analysis (DDA) to model normal P‐wave propagation across rock fractures. The effects of a single fracture and multiple parallel fractures are all tested. The results indicate that DDA can accurately reflect the fracture effects, including the fractures stiffness, the fracture spacing and the fracture number, and the effects of incident wave frequency on one‐dimensional P‐wave propagation problems. Thus, DDA is able to deal well with normal incident P‐wave propagation problems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
993.
This paper integrates random field simulation of soil spatial variability with numerical modeling of coupled flow and deformation to investigate consolidation in spatially random unsaturated soil. The spatial variability of soil properties is simulated using the covariance matrix decomposition method. The random soil properties are imported into an interactive multiphysics software COMSOL to solve the governing partial differential equations. The effects of the spatial variability of Young's modulus and saturated permeability together with unsaturated hydraulic parameters on the dissipation of excess pore water pressure and settlement are investigated using an example of consolidation in a saturated‐unsaturated soil column because of loading. It is found that the surface settlement and the pore water pressure profile during the process of consolidation are significantly affected by the spatially varying Young's modulus. The mean value of the settlement of the spatially random soil is more than 100% greater than that of the deterministic case, and the surface settlement is subject to large uncertainty, which implies that consolidation settlement is difficult to predict accurately based on the conventional deterministic approach. The uncertainty of the settlement increases with the scale of fluctuation because of the averaging effect of spatial variability. The effects of spatial variability of saturated permeability ksat and air entry parameters are much less significant than that of elastic modulus. The spatial variability of air entry value parameters affects the uncertainties of settlement and excess pore pressure mostly in the unsaturated zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
994.
Assuming that the pile variable cross section interacts with the surrounding soil in the same way as the pile toe does with the bearing stratus, the interaction of pile variable cross section with the surrounding soil is represented by a Voigt model, which consists of a spring and a damper connected in parallel, and the spring constant and damper coefficient are derived. Thus, a more rigid pile–soil interaction model is proposed. The surrounding soil layers are modeled as axisymmetric continuum in which its vertical displacements are taken into account and the pile is assumed to be a Rayleigh–Love rod with material damping. Allowing for soil properties and pile defects, the pile–soil system is divided into several layers. By means of Laplace transform, the governing equations of soil layers are solved in frequency domain, and a new relationship linking the impedance functions at the variable‐section interface between the adjacent pile segments is derived using a Heaviside step function, which is called amended impedance function transfer method. On this basis, the impedance function at pile top is derived by amended impedance function transfer method proposed in this paper. Then, the velocity response at pile top can be obtained by means of inverse Fourier transform and convolution theorem. The effects of pile–soil system parameters are studied, and some conclusions are proposed. Then, an engineering example is given to confirm the rationality of the solution proposed in this paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
995.
Understanding fracture openness in the Earth's crust is crucial for understanding fracture properties and their impact on fluid flow and potentially also in reservoir modelling. Here, we present cases showing the presence of open tensile fractures at depth in anticlines by integrating borehole imaging logs, core observations, casting sections, physical modelling, in‐situ stress analysis and production data in petroleum wells, and analysing the time of fracturing by fluid inclusion analysis. The data come from the Cretaceous Bashejiqike Formation in the Kuqa Depression, Tarim basin; its current depth varies between 6,000 and 8,100 m. The results show that tensile fractures are the main fracture type in the studied formation and that their hydraulic conductivity is poorly affected by the current maximum horizontal stress direction. Furthermore, we find that fracture development is uninterrupted during continued anticline folding, although there is a dominant time of fracturing.  相似文献   
996.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
997.
The response of runoff and erosion to soil crusts has been extensively investigated in recent decades. However, there have been few attempts to look at the effects of spatial configuration of different soil crusts on erosion processes. Here we investigated the effects of different spatial distributions of physical soil crusts on runoff and erosion in the semi‐arid Loess Plateau region. Soil boxes (1.5 m long × 0.2 m wide) were set to a slope of 17.6% (10°) and simulated rainfall of 120 mm h?1 (60 minutes). The runoff generation and erosion rates were determined for three crust area ratios (depositional crust for 20%, 33%, and 50% of the total slope) and five spatial distribution patterns (depositional crust on the lower, lower‐middle, middle, mid‐upper, and upper slope) of soil crusts. The reduction in sediment loss (‘sediment reduction’) was calculated to evaluate the effects of different spatial distributions of soil crusts on erosion. Sediment yield was influenced by the area ratio and spatial position of different soil crusts. The runoff rate reached a steady state after an initial trend of unsteadily increasing with increasing rainfall duration. Sediment yield was controlled by detachment limitation and then transport limitation under rainfall. The shifting time of erosion from a transport to detachment‐limiting regime decreased with increasing area of depositional crust. No significant differences were observed in the total runoff among treatments, while the total sediment yield varied under different spatial distributions. At the same area ratio, total sediment yield was the largest when the depositional crust was on the upper slope, and it was smallest when the crust was deposited on the lower slope. The sediment reduction of structural crust (42.5–66.5%) was greater than that of depositional crust (16.7–34.3%). These results provide a mechanistic understanding of how different spatial distributions of soil crusts affect runoff and sediment production. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
998.
Potential evaporation (PE) is the basic component of the global hydrological cycle and energy balance. This study detected the temporal and spatial variations of PE and related driving factors in Tibet, China, for the period 1961–2001, based on observed data recorded at 22 meteorological stations. The results showed that (1) Tibet experienced a statistically significant decrease of PE between 1961 and 2001, which started mainly in the 1980s, along with accelerated warming; (2) the mean annual PE in Tibet showed an east–west increasing trend, and the annual PE at most stations presented decreasing trends; (3) an inverse correlation of mean annual PE with elevation was detected (low–high decreasing trend), and the statistical equations to estimate PE were established based on longitude, latitude and elevation; and (4) PE in Tibet can be well expressed by related meteorological variables, with vapour pressure deficit the dominant factor in determining PE.
EDITOR Z. W. Kundzewicz ASSOCIATE EDITOR not assigned  相似文献   
999.
This paper presents semi‐analytical solutions to Fredlund and Hasan's one‐dimensional consolidation of unsaturated soils with semi‐permeable drainage boundary under time‐dependent loadings. Two variables are introduced to transform two coupled governing equations of pore‐water and pore‐air pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. The pore‐water pressure, pore‐air pressure and settlement are obtained in the Laplace domain. Crump's method is adopted to perform the inverse Laplace transform in order to obtain semi‐analytical solutions in time domain. It is shown that the present solutions are more general and have a good agreement with the existing solutions from literatures. Furthermore, the current solutions can also be degenerated into conventional solutions to one‐dimensional consolidation of unsaturated soils with homogeneous boundaries. Finally, several numerical examples are provided to illustrate consolidation behavior of unsaturated soils under four types of time‐dependent loadings, including instantaneous loading, ramp loading, exponential loading and sinusoidal loading. Parametric studies are illustrated by variations of pore‐air pressure, pore‐water pressure and settlement at different values of the ratio of air–water permeability coefficient, depth and loading parameters. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
1000.
The levels and distribution of tris-(2,3-dibromopropyl) isocyanurate (TBC) and hexabromocyclododecanes (HBCDs) of surface sediments in the Yellow River Delta wetland had been investigated. The concentrations of TBC and ∑ HBCDs ranged from 0.20 to 29.03 ng·g? 1 dw and below limits of detections (LODs) to 20.25 ng·g? 1 dw. The average composition profile of three HBCDs isomers were 10.1%, 6.1% and 83.8% for α-, β- and γ-HBCD, respectively. Moreover, correlation analysis indicated there are similar sources among three isomers and positive correlations between total organic carbon (TOC) content and concentrations of TBC and HBCDs. The mass inventory of TBC,α-, β-, γ-HBCD, ΣHBCDs in surface sediments of Yellow River Delta wetland were estimated about 725.50, 72.76, 44.29, 548.34, 665.39 kg. Therefore, further investigations on potential human health and environmental risk assessments of TBC and HBCDs were needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号